Pull from Microsoft Dataverse¶
Microsoft Dataverse is secure, cloud-based table storage for business applications, such as those belonging to the Microsoft Power Platform (Power BI, Power Apps, Power Automate, Power Virtual Agents, and Power Pages), Microsoft 365, Microsoft Azure, Dynamics 365, and other standalone applications.
Use this connector to pull database tables from Microsoft Dataverse to Amperity.
This topic describes the steps that are required to pull data tables to Amperity from Microsoft Dataverse:
Get details¶
Amperity can be configured to send data tables from Microsoft Dataverse.
The Azure tenant ID, Azure client ID, and your Azure client secret that has access to your Power Apps application.
The environment region, environment name, and logical table name for your Power Apps application. For example: “crm” (region), “acme” (name), and “abc123_acme” (logical table name).
Add courier¶
A courier brings data from an external system to Amperity.
Tip
You can run a courier with an empty load operation using {}
as the value for the load operation. Use this approach to get files to upload during feed creation, as a feed requires knowing the schema of a file before you can apply semantic tagging and other feed configuration settings.
To add a courier
From the Sources page, click Add Courier. The Add Source page opens.
Find, and then click the icon for Microsoft Dataverse. The Add Courier page opens.
This automatically selects microsoft-dataverse as the Credential Type.
Enter the name of the courier. For example: “Microsoft Dataverse”.
From the Credential drop-down, select Create a new credential. This opens the Create New Credential page.
Enter a name for the credential, the Azure tenant ID, Azure client ID, and your Azure client secret. Click Save.
Under Dataverse Settings, add the catalog, database and logical table name.
Caution
The database and table names must be a valid database and table in Microsoft Dataverse. Catalog name is optional.
Configure the load operations to have the correct feed ID, operation, and file name. (The file name is the logical table name in Microsoft Dataverse.)
Click Save.
Get sample files¶
Every Microsoft Dataverse file that is pulled to Amperity must be configured as a feed. Before you can configure each feed you need to know the schema of that file. Run the courier without load operations to bring sample files from Microsoft Dataverse to Amperity, and then use each of those files to configure a feed.
To get sample files
From the Sources tab, open the menu for a courier configured for Microsoft Dataverse with empty load operations, and then select Run. The Run Courier dialog box opens.
Select Load data from a specific day, and then select today’s date.
Click Run.
Important
The courier run will fail, but this process will successfully return a list of files from Microsoft Dataverse.
These files will be available for selection as an existing source from the Add Feed dialog box.
Wait for the notification for this courier run to return an error similar to:
Error running load-operations task Cannot find required feeds: "df-xxxxxx"
Add feeds¶
A feed defines how data should be loaded into a domain table, including specifying which columns are required and which columns should be associated with a semantic tag that indicates that column contains customer profile (PII) and transactions data.
Note
A feed must be added for each table that is pulled from Microsoft Dataverse.
To add a feed
From the Sources tab, click Add Feed. This opens the Add Feed dialog box.
Under Data Source, select Create new source, and then enter “Microsoft Dataverse”.
Enter the name of the feed in Feed Name. For example: “DataverseTable”.
Tip
The name of the domain table will be “<data-source-name>:<feed-name>”. For example: “Microsoft Dataverse:DataverseTable”.
Under Sample File, select Select existing file, and then choose from the list of files. For example: “filename_YYYY-MM-DD.csv”.
Tip
The list of files that is available from this drop-down menu is sorted from newest to oldest.
Select Load sample file on feed activation.
Click Continue. This opens the Feed Editor page.
Select the primary key.
Apply semantic tags to customer records and interaction records, as appropriate.
Under Last updated field, specify which field best describes when records in the table were last updated.
Tip
Choose Generate an “updated” field to have Amperity generate this field. This is the recommended option unless there is a field already in the table that reliably provides this data.
For feeds with customer records (PII data), select Make available to Stitch.
Click Activate. Wait for the feed to finish loading data to the domain table, and then review the sample data for that domain table from the Data Explorer.
Add load operations¶
After the feeds are activated and domain tables are available, add the load operations to the courier used for Microsoft Dataverse.
Example load operations
Load operations must specify each file that will be pulled to Amperity from Microsoft Dataverse.
For example:
{
"DATAVERSE-TABLE-FEED-ID": [
{
"type": "truncate"
},
{
"type": "load",
"file": "dataverse-table-name"
}
]
}
To add load operations
From the Sources tab, open the menu for the courier that was configured for Microsoft Dataverse, and then select Edit. The Edit Courier dialog box opens.
Edit the load operations for each of the feeds that were configured for Microsoft Dataverse so they have the correct feed ID.
Click Save.
Run courier manually¶
Run the courier again. This time, because the load operations are present and the feeds are configured, the courier will pull data from Microsoft Dataverse.
To run the courier manually
From the Sources tab, open the menu for the courier with updated load operations that is configured for Microsoft Dataverse, and then select Run. The Run Courier dialog box opens.
Select the load option, either for a specific time period or all available data. Actual data will be loaded to a domain table because the feed is configured.
Click Run.
This time the notification will return a message similar to:
Completed in 5 minutes 12 seconds
Add to courier group¶
A courier group is a list of one (or more) couriers that are run as a group, either ad hoc or as part of an automated schedule. A courier group can be configured to act as a constraint on downstream workflows.
To add the courier to a courier group
From the Sources tab, click Add Courier Group. This opens the Create Courier Group dialog box.
Enter the name of the courier. For example: “Microsoft Dataverse”.
Add a cron string to the Schedule field to define a schedule for the orchestration group.
A schedule defines the frequency at which a courier group runs. All couriers in the same courier group run as a unit and all tasks must complete before a downstream process can be started. The schedule is defined using cron.
Cron syntax specifies the fixed time, date, or interval at which cron will run. Each line represents a job, and is defined like this:
┌───────── minute (0 - 59) │ ┌─────────── hour (0 - 23) │ │ ┌───────────── day of the month (1 - 31) │ │ │ ┌────────────── month (1 - 12) │ │ │ │ ┌─────────────── day of the week (0 - 6) (Sunday to Saturday) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ * * * * * command to execute
For example,
30 8 * * *
represents “run at 8:30 AM every day” and30 8 * * 0
represents “run at 8:30 AM every Sunday”. Amperity validates your cron syntax and shows you the results. You may also use crontab guru to validate cron syntax.Set Status to Enabled.
Specify a time zone.
A courier group schedule is associated with a time zone. The time zone determines the point at which a courier group’s scheduled start time begins. A time zone should be aligned with the time zone of system from which the data is being pulled.
Use the Use this time zone for file date ranges checkbox to use the selected time zone to look for files. If unchecked, the courier group will use the current time in UTC to look for files to pick up.
Note
The time zone that is chosen for an courier group schedule should consider every downstream business processes that requires the data and also the time zone(s) in which the consumers of that data will operate.
Add at least one courier to the courier group. Select the name of the courier from the Courier drop-down. Click + Add Courier to add more couriers.
Click Add a courier group constraint, and then select a courier group from the drop-down list.
A wait time is a constraint placed on a courier group that defines an extended time window for data to be made available at the source location.
Important
A wait time is not required for a bridge.
A courier group typically runs on an automated schedule that expects customer data to be available at the source location within a defined time window. However, in some cases, the customer data may be delayed and isn’t made available within that time window.
For each courier group constraint, apply any offsets.
A courier can be configured to look for files within range of time that is older than the scheduled time. The scheduled time is in Coordinated Universal Time (UTC), unless the “Use this time zone for file date ranges” checkbox is enabled for the courier group.
This range is typically 24 hours, but may be configured for longer ranges. For example, it’s possible for a data file to be generated with a correct file name and datestamp appended to it, but for that datestamp to represent the previous day because of how an upstream workflow is configured. A wait time helps ensure that the data at the source location is recognized correctly by the courier.
Warning
This range of time may affect couriers in a courier group whether or not they run on a schedule. A manually run courier group may not take its schedule into consideration when determining the date range; only the provided input day(s) to load data from are used as inputs.
Click Save.